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Highlights  Abstract  

▪ The mean residual lifetime functions of a three-

state standby system are obtained.  

▪ In MSS, a performance measures are obtained 

in case a system is at state "j or above"at t. 

▪ The main contribution of the study;  MRL is 

obtained when the system is at state "j".   

▪ The effect of different degradation rates of each 

state on the MRL is investigated.  

▪ Optimization problem finds the average 

replacement costs, the optimal replacement 

times. 

 In this paper, a new MRL assessment approach for a multi-state standby 

system is considered. The three-state system is backed up with a binary 

cold standby unit. Given that the system is at a specific state at time t, 

obtaining the MRL is worth considering in conducting the maintenance 

and repair plans of the system. For different degradation rates and time 

points, MRL results are examined. An HCTMP is considered for the 

degradation. Therefore, when the system is observed to be at its perfect 

state, the MRL decrease with an increase in all the failure rates of the 

system. However, when the system is observed to be at its partial state, 

the MRL is not affected by the increase in the failure rate pertained to 

the perfect state. The MRL when the system has known to be failed 

before time t and backed up with the standby unit increases with the time 

increase whereas the MRL when the system is at its perfect(or partial) 

state is constant when time increases. Moreover, cost evaluation of the 

system is analyzed. The results are supported with numerical examples 

and graphical representations. 
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1. Introduction 

In the theory of reliability analysis and the reliability 

applications of many industrial systems, to enhance the 

redundancy of the system or bring down the costs in the 

maintenance activities, a standby redundancy is practically 

used. Many structures used in engineering can fail due to many 

external factors besides getting age or as a result of their natural 

degradation process. For instance, a computer can be affected 

by a virus, an energy supplier can be influenced by a change in 

a voltage or a metal component can be affected by temperature 

changes [4]. Then, the degradation as a result of those external 

factors for the components or the system is inevitable in many 

cases. Therefore, to attain the reliability of many systems such 

as computers, telecommunication systems or electric power 

supply systems, standby redundancy is used. It also has critical 

importance in some fields to use a standby component, for 

instance, in airplane control systems or space works. Standby 

systems are mostly studied in the literature when the 

components or the systems have binary states. Pen, Zichun and 

Bin [27] dealt with the reliability analysis of a standby system 

in which one of its components is a cold standby. The results 
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were illustrated by an exponentially distributed lifetimes of the 

components. The matrix analysis method was used to deal with 

the reliability analysis of such systems and some performance 

characteristics of those systems were obtained. Chen, et al. [5], 

worked on a binary-state standby system in one of the system's 

components was cold standby and unrepairable. A binary 

decision diagram was suggested for the reliability analysis of 

the system discussed. Also, it has been noted that the lifetime of 

the system decreases when a specific type of failure mechanism 

is considered based on a simulation study. Li, et al. [23] have 

worked on a reliability analysis of an air cooling system of  

a nuclear power plant in which one of the system components is 

unrepairable cold standby. They took into account two cases as 

the activation time of the standby component is negligible or 

non-negligible. Zhai, et al. [37] considered the reliability 

analysis of a 1-out-of-n cold standby system and proposed  

a multiple-valued decision diagram for the reliability evaluation 

of the system. The findings of the study were also verified by 

Monte Carlo simulations. Fathizadeh and Khorshidian [12] used 

an alternative approach based on a matrix repair fuction in 

obtaining the reliability of a standby system which is binary. In 

this case, they considered the system with two identical cold 

standby components have a Semi-Markov degradation process. 

Some reliability measures such as availability and mean time to 

failure were also obtained within their study. Chen, et al. [4] 

considered a two unit cold standby system and evaluated its 

reliability. The failure of the system resulted from the natural 

degradation process or external factors. Therefore, they took 

into account the Markov process, Laplace transformation 

techniques and Tauberian theory. Some indices were derived for 

the system availability, system reliability, failure rate and mean 

time to the first failure. Yuan and Meng [35] evaluated the 

reliability analysis of a repairable warm standby system with 

two nonidentical components. Some important robust state 

indices were derived by using a Markov process theory and 

Laplace transformations. Numerical illustrations were also 

given to support the findings in the same work. Leung, Zhang 

and Lai [20] worked on a repairable cold standby system that 

has binary components and obtained its reliability. The optimal 

T minimizing the mean loss/cost rate per time in the long term 

was determined. The expression for the mean loss rate of the 

system was obtained explicitly in their study. Su [29] examined 

the reliability of the repairable and unrepairable cold standby 

systems which have binary states. New reliability indices and 

some computing methods for those indices in case of repairable 

and unrepairable failures of the system were proposed. 

Yaghoubi and Akhavan [33] examined the reliability of a system 

with two units.  A dependency has been assumed between the 

switch and its associated active component. Marshall-Olkin 

bivariate exponential distribution was used to model the 

dependency and the continuous Markov chain method was 

considered in the reliability analysis. Wang, et al. [31] studied 

the availability of a multi-component series system with k-out-

of-n:G standby subsystems which are warm standby. Some 

recent works have also discussed some reliability performance 

characteristics of standby systems. Some of those 

characteristics taken into account in the study of Tuncel [30] 

were the mean residual or mean past lifetimes. In the same 

work, the mean residual lifetime of a system with one unit and 

a binary cold standby component was obtained.  

Multi-state systems were practically used instead of binary-

state systems due to their flexibility in the field of engineering. 

Many systems can have more than two possible states except 

just failure and working states. The system can work with  

a partial performance which is between the failure and the 

perfect state. Therefore, a multi-state system(MSS) includes 𝑚 

states. State "𝑚" indicates the full performance of the system, 

besides state "0" denotes the failure of the system. Owing to the 

system’s stochastic behaviour, at the beginning the system starts 

with its perfect functioning state and when time increases the 

other states of the system start to be observed as  

a result of the deterioration. In the literature, many articles deal 

with the reliability modeling multi-state systems and their 

analysis. For instance; El-Neweihi, Proschan and Sethuraman 

[7] worked on the development of the basic theory of multi-state 

structures. Hudson and Kapur [13] suggested reliability models 

for multi-state systems and discussed several applications of 

those models. Two definitions were given for the multi-state 

systems by Ebrahimi [6] and some features of them were 

examined within the same work. Boedigheimer and Kapur [2] 

worked on customer-focused multi-state systems. Brunelle and 

Kapur [3] suggested a new classification plan for some 

reliability measures and generalized these measures to multi-

state systems. Eryilmaz [8] obtained the results regarding one 
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of the important performance characteristics, the mean residual 

lifetime, of a MSS. The stochastic behavior of multi-state 

systems has also worthy of attention in the literature. There are 

many researches on the stochastic reliability modeling of multi-

state systems and its evaluation problem. Iscioglu [14] studied 

some performance characteristics of two types of multi-state k-

out-of-n:G systems under the assumption that the components 

are independent and identically distributied via using order 

statistics. Besides, in [15], a similar problem is discussed for the 

two types of three-state systems under non-identically 

ditributed components of the system using permanent-based 

representations for the survival probabilities. The first studies in 

which the relability measures for a MSS are proposed to be 

considered at some intermediate state j or above at time 𝑡 are the 

studies of Liu and Kapur [ 25-26]. A detailed literature review 

of the dynamic reliability of multi-state systems can be found in 

[24]. Shu, et al. [28] also proposed several new measures for the 

tool performance. They used non-homogeneous continuous 

time Markov process(NHCTMP) for the tool degradation. It is 

stated that in the evaluation of the state probabilities of the 

multi-state tools, it is important to consider how long the tool 

has been at its current state. Xue and Yang [32] generalized 

some parameters in the binary state structures to the multi-state 

case. Measures for obtaining the performance degradation  are 

developed for the MSS structures. Continuous time Markov and 

Semi-Markov processes were used in modeling the lifetime 

distributions of multi-state systems and for those models, 

performance measures such as 𝑅(𝑡), 𝐹(𝑡), 𝜆(𝑡) were derived in 

[34]. In many of those works as we have mentioned the 

degradation of multi-state systems follows a continuous time 

homogeneous or a nonhomogeneous Markov process 

assumption. Besides the extensive literature based on multi-

state systems, there are not many articles considering multi-state 

standby systems. The reliability evaluation problem of standby 

systems with multi-state elements with constant transition rates 

and absorbing failure states was considered in [17]. A new 

iterative algorithm based on the element state probabilities were 

developed. The results were discussed for cold, warm and hot 

standby systems in the same work. Standby systems with multi-

state elements which have constant transition rates were also 

considered in Levitin et al. [22]. Another iterative algorithm for 

the reliability of the mentioned systems were proposed in [22]. 

A modification of a generalized reliability block diagram 

method was suggested for the reliability analysis and 

performance measures of multi-state systems with imperfect 

multi-fault coverage in [21]. Kim et al. [19] considered the 

reliability analysis of a multi-state parallel system structure with 

a multi-functional standby component which is redundant and 

preferred to be used in the systems such as aircrafts. Jia et al. 

[18] dealt with the reliability evaluation of power systems with 

multi-state warm standby and multi-state performance sharing 

mechanism. Multi-state decision diagram was proposed to 

obtain the reliability of the system. In the study of Eryilmaz [9], 

a multi-state cold standby system having one active and one 

standby unit was considered. The activation time for a standby 

component was determined by state "j" of an active component 

in the system. When the active component is below the state "j", 

the standby component starts to work. As the switching 

mechanism among the working components and the standby 

units are important in balancing the component’s degradation 

and extending the lifetime of many systems, Zhao et al. [38] 

proposed a joint optimization model that both captures 

component switching and mission abort policies and minimizes 

the long-run expected total economic loss of multistate warm 

standby systems. In these studies considering multi-state 

standby systems, many performance characteristics are obtained 

given the information that the system is at state "j or above" at 

time t. Different from them, the scientific contribution of this 

research is the evaluation of the MRL function of a standby 

system given the information that the system is at state "j" not 

"j or above" at time t. The theoretical achievements are worth 

considering and are practically applicable in the field of 

engineering. In addition, an optimization problem is taken into 

account to strengthen the applicability of the proposed model in 

the maintenance and repair plans of the system. 

In the present paper, therefore, it is aimed to achieve first the 

survival functions and then, the MRL functions of a multi-state 

standby system under the knowledge regarding the state of the 

system at ∀𝑡 . This information is noteworthy and can be used 

by an expert in designing maintenance schedules and in 

planning the investments of a multi-state standby system. Thus, 

with regard to the results obtained in this work, we also want to 

investigate the effect of different degradation rates of the 

lifetimes spent at each state on the MRL values of the multi-



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

state standby system. Besides, we deal with the optimization 

problem regarding the average replacement costs of the system 

in the long run in which simultaneously we search for the 

optimal replacement times of the system. When the frame of the 

work is given, firstly in section II, the research methodology 

used to find out the MRL functions following the conditional 

survival probabilities for a three-state standby system are 

provided by introducing the system and its assumptions 

considered in this work. Also, in the same section the MTTF 

functions of the system are considered. In Section III, some 

numerical examples are presented to illustrate the theoretical 

findings based on several features such as various degradation 

rates of the three-state component, the standby unit and the 

changes in time. In Section IV,  the problem of determining the 

optimal replacement time which minimizes the total long-run 

average cost per unit time for the system is discussed by 

considering different degradation parameters and replacement 

costs for the different situations of the system. To make the 

model proposed in this study be comprehended well, a case 

study of a smart house that supplies its own energy by its own 

wind turbine located on its roof is comprised in Section V. 

Finally in section VI, the study is concluded with some foremost 

findings obtained and some future research problems are 

pointed out. 

2. Research Methodology 

2.1. The System and Its Assumptions 

A multi-state standby system is considered. The system has just 

one component and that component has three states such as; "2" 

indicates the perfect functioning state, "1" refers to the partially 

working state and "0" represents the failure state. There is a cold 

standby unit in the system, when the system fails the standby 

unit starts to work. This standby unit is considered as binary. 

Thus, it has just two states such as; "1" shows the working state 

and "0" indicates the failure state of a standby component. 

Hence, we call this system a multi-state standby system. 

Throughout the paper, the following assumptions are considered 

regarding the system. 

*  𝑇1 and 𝑇2 denote the lifetime of the component spent at 

state "1", and state "2", respectively. 

*  𝑇1 + 𝑇2 is the lifetime of the component (represented as 

𝑇≥1, as well). 

* 𝑇2 is the lifetime spent at state "2"(represented as   𝑇≥2, as 

well). 

* The system degrades by time t from its perfect state, which 

is state "2" , to the lower states. 

* The system is at its perfect state when time equals "0". 

* A non-repairable system is considered. 

* The degradation process of the system follows an HCTMP 

(homogeneous continuous time Markov process). 

*  𝑋 denotes the lifetime of the cold-standby unit in the 

system. 

In the reliability evaluation of this three-state standby 

system, we consider especially the mean residual lifetimes of 

the system except just finding out the survival probabilities of 

the system for an arbitrary time point 𝑡. Especially, during 

inspections of the system, when someone observes the state of 

the system, under this knowledge making some predictions 

about the survival probability or the mean residual lifetime of 

the system is remarkable and becomes really important for the 

system experts to make their maintenance plans of the system. 

Therefore, some residual lifetime representations are given 

under some conditions for the system as follows; 

{𝑇1 + 𝑇2 + 𝑋 − 𝑡|𝑇≥2 > 𝑡}   (1) 

(1) represents the residual lifetime of the three-state standby 

system under the knowledge that the system is at its perfect 

functioning state at ∀𝑡. 

{𝑇1 + 𝑇2 + 𝑋 − 𝑡|𝑇≥2 ≤ 𝑡, 𝑇≥1 > 𝑡}  (2) 

(2) indicates the residual lifetime of the three-state standby 

system under the knowledge that the system is at its partially 

working at ∀𝑡. In the representations (1) and (2), the conditions 

can also be written as {𝑇≥2 > 𝑡, 𝑋 > 𝑡} and {𝑇≥2 ≤ 𝑡, 𝑇≥1 >

𝑡, 𝑋 > 𝑡}  since in the case of cold standby redundancy, 

𝑃{𝑇≥2 > 𝑡} > 0 and 𝑃{𝑇≥2 ≤ 𝑡, 𝑇≥1 > 𝑡} > 0 implies 

respectively 𝑃{𝑋 > 𝑡} = 1 for 𝑡 > 0. 

{𝑇1 + 𝑇2 + 𝑋 − 𝑡|𝑇≥1 < 𝑡, 𝑋 > 𝑡}  (3) 

(3) shows the residual lifetime of the three-state standby system 

under the knowledge that, the three-state system has failed 

before time 𝑡, however, the standby component has been 

activated and the system is working with its standby unit at time 

𝑡. Thus, under these three constructions, one can achieve the 

survival probabilities and the mean residual lifetimes(MRLs) of 

the three-state standby system. 
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2.2. Evaluation of the MRL and the Conditional Survival 

Functions  

Let 𝑇1 and 𝑇2 follow a joint cumulative distribution function; 

𝐻(𝑡1, 𝑡2) = 𝑃{𝑇1 ≤ 𝑡1, 𝑇2 ≤ 𝑡2} and the marginal distribution 

functions; 𝐹1(𝑡1) = 𝑃{𝑇1 ≤ 𝑡1} 𝐹2(𝑡2) = 𝑃{𝑇2 ≤ 𝑡2}, 

respectively, for 𝑡1, 𝑡2 > 0. Let 𝑋 follows a marginal 

distribution function as; 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥). Let 𝜙(𝑡) denotes 

the structure function of the system which itself models the 

functioning of a system for given states of its components. In 

this study, the system is a one-component system, therefore, 

𝜙(𝑡) denotes the state of the component, as well and takes the 

values "2,1 and 0". For instance; when the system is at its perfect 

functioning state at time 𝑡 ,  𝜙(𝑡)  takes the value "2”or when 

the system is at its partially working state at time 𝑡 ,  𝜙(𝑡)  takes 

the value "1”. 

By the following theorems, the conditional survival 

functions of a three-state standby system are provided. Then, 

following the theorems, the MRL functions are also achieved. 

Theorem 1: Given the information that the three-state 

standby system is at its perfect functioning state at ∀𝑡,  the 

system’s conditional survival function is obtained as; 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝜙(𝑡) = 2} = 𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇≥2 > 𝑡}   (4) 

=
1

𝐹2(𝑡)
{𝐹̅2(𝑠) + ∫ 𝑃{𝑇1 + 𝑋 > 𝑠 − 𝑦|𝑇2 = 𝑦}𝑑𝐹2(𝑦)

𝑠

𝑡
}, 𝑓𝑜𝑟  𝑠 > 𝑡(5) 

Proof: We can express (4) as; 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇2 > 𝑡}   (6) 

To solve (6) the following equation is established; 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇2 > 𝑡} =
𝑃{𝑇1+𝑇2+𝑋>𝑠,𝑇2>𝑡}

𝑃{𝑇2>𝑡}
  𝑓𝑜𝑟  𝑠 > 𝑡       (7) 

By conditioning on 𝑇2 in both numerator and denominator of 

equation (7), one can obtain;  

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠, 𝑇2 > 𝑡} = ∫ 𝑃{𝑇1 + 𝑋 > 𝑠 − 𝑦|𝑇2 = 𝑦}𝑑𝐹2(𝑦)
𝑦>𝑡

 

= ∫ 𝑑𝐹2(𝑦) + ∫ 𝑃{𝑇1 + 𝑋 > 𝑠 − 𝑦|𝑇2 = 𝑦}𝑑𝐹2(𝑦)
𝑦>𝑡,

𝑠−𝑦>0
𝑦>𝑡,

𝑠−𝑦<0

 

= 𝐹̅2(𝑠) + ∫ 𝑃{𝑇1 + 𝑋 > 𝑠 − 𝑦|𝑇2 = 𝑦}𝑑𝐹2(𝑦)
𝑠

𝑡
, 

and 𝐹̅2(𝑡), respectively. Therefore, by taking into account these 

two functions, equation (5) is obtained. 

Corollary 1: If 𝑇1, 𝑇2 and 𝑋 are independent, then 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇2 > 𝑡} =
𝐹2(𝑠)

𝐹2(𝑡)
+

∫ 𝑃{𝑇1+𝑋>𝑠−𝑦}𝑑𝐹2(𝑦)
𝑠

𝑡

𝐹2(𝑡)
       (8) 

for 𝑠 > 𝑡. 

Given the information that the three-state standby system is 

at its perfect functioning state, the MRL of the system is the 

expected value of the conditional random variable {𝑇1 + 𝑇2 +

𝑋 − 𝑡|𝑇2 > 𝑡} and obtained as; 

𝑚1(𝑡) = 𝐸(𝑇1 + 𝑇2 + 𝑋 − 𝑡|𝑇2 > 𝑡)  (9) 

= ∫ 𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑡 + 𝑣|𝑇2 > 𝑡}𝑑𝑣
∞

0
. 

Using equation (5), 

𝑚1(𝑡) = ∫
𝐹2(𝑡+𝑣)

𝐹2(𝑡)
𝑑𝑣

∞

0
+

1

𝐹2(𝑡)
∫ ∫ 𝑃{𝑍1 > 𝑡 + 𝑣 −

𝑡+𝑢

𝑡

∞

0

𝑦|𝑇2 = 𝑦}𝑑𝐹2(𝑦)𝑑𝑣      (10) 

where 𝑍1 = 𝑇1 + 𝑋. Thus, equation (10) actually is used to 

calculate the MRL of the standby system when someone 

observes the system at its perfect functioning state at time 𝑡. 

Corollary 2:  If 𝑇1, 𝑇2 and 𝑋 are independent, then the MRL 

when the system is observed to be at its perfect functioning state 

at time 𝑡 is; 

𝑚1(𝑡) = ∫ 𝐹̅𝑍1
(𝑣)𝑑𝑣 + ∫

𝐹2(𝑣)

𝐹2(𝑡)
𝑑𝑣

∞

𝑡

∞

0
          (11) 

Proof: If 𝑇1, 𝑇2 and 𝑋 are independent, then the MRL is 

written as; 

𝑚1(𝑡) = 𝐸(𝑇1 + 𝑋) + 𝐸(𝑇2 − 𝑡|𝑇2 > 𝑡) (12) 

Let 𝑍1 denotes 𝑇1 + 𝑋, then it is obvious that 

𝐸(𝑍1) = ∫ 𝑃(𝑍1 > 𝑣)𝑑𝑣 =
∞

0

∫ 𝐹̅𝑍1
(𝑣)𝑑𝑣

∞

0

 

and 

𝐸(𝑇2 − 𝑡|𝑇2 > 𝑡) = ∫ 𝑃(𝑇2 > 𝑡 + 𝑣|𝑇2 > 𝑡)𝑑𝑣
∞

0

 

= ∫
𝑃(𝑇2 > 𝑡 + 𝑣)

𝑃(𝑇2 > 𝑡)

∞

0

𝑑𝑣 = ∫
𝐹̅2(𝑡 + 𝑣)

𝐹̅2(𝑡)
𝑑𝑣

∞

0

 

Thus the proof is completed. 

Theorem 2: Given the information that the three-state 

standby system is at its partially working state at ∀𝑡, the 

system’s conditional survival function is obtained as; 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝜙(𝑡) = 1} = 𝑃{𝑇1 + 𝑇2 + 𝑋 >

𝑠|𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡}  (13) 

=
∬ 𝑃{𝑇1 > 𝑠 − 𝑦 − 𝑥, 𝑇1 > 𝑡 − 𝑦|𝑇2 = 𝑦, 𝑋 = 𝑥} 𝑑𝐹𝑋,𝑇2(𝑥,𝑦) 𝑑𝑥 𝑑𝑦𝑦<𝑡,

𝑥>0

∫ 𝑃{𝑇1 > 𝑡 − 𝑦|𝑇2 = 𝑦}𝑑 𝐹2 (𝑦)
𝑡

0

(14) 

for 𝑠 > 𝑡. 

Proof: We can express (13) as; 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡} =

                   
𝑃{𝑇1+𝑇2+𝑋>𝑠,𝑇2≤𝑡,𝑇1+𝑇2>𝑡}

𝑃{ 𝑇2≤𝑡,𝑇1+𝑇2>𝑡}
            (15) 

and to solve equation (15), it is required to condition on 𝑇2 and 

𝑋 for the numerator, and condition on 𝑇2 for the denominator. 
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Corollary 3: If 𝑇1, 𝑇2 and 𝑋 are independent, then 

                                             𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝜙(𝑡) = 1} 

                                                                                                               

                            (16) 

=
∫ ∫ 𝐹̅1(𝑠 − 𝑦 − 𝑥)𝑓𝑋(𝑥) 𝑓2(𝑦)𝑑𝑥 𝑑𝑦 + ∫ ∫ 𝐹̅1(𝑡 − 𝑦)𝑓𝑋(𝑥)𝑓2(𝑦)𝑑𝑥 𝑑𝑦

∞

𝑠−𝑡

𝑡

0

𝑠−𝑡

0

𝑡

0

∫ 𝐹̅1(𝑡 − 𝑦)𝑓2(𝑦) 𝑑𝑦
𝑡

0

 

 

Proof: The denominator of equation (15) can be written by 

conditioning on 𝑇2 as follows; 

Also, the numerator of equation (15) can be written by 

conditioning on 𝑇2 and 𝑋 as follows; 

∫ 𝑃{𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡|𝑇2 = 𝑦} 𝑑𝐹2(𝑦) = ∫ 𝐹̅1(𝑡 − 𝑦)𝑓2(𝑦) 𝑑𝑦
𝑡

0𝑦<𝑡

 

 

= ∫ 𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠, 𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡|𝑇2 = 𝑦} 𝑑𝐹2(𝑦)
𝑦<𝑡

 

= ∫ 𝑃{𝑇1 + 𝑋 > 𝑠 − 𝑦, 𝑇1 > 𝑡 − 𝑦} 𝑑𝐹2(𝑦)
𝑦<𝑡

 

= ∫ ∫ 𝑃{𝑇1 > 𝑠 − 𝑦 − 𝑥, 𝑇1 > 𝑡 − 𝑦|𝑋 = 𝑥} 𝑑𝐹𝑋(𝑥) 𝑑𝐹2(𝑦)
∞

0

𝑡

0

 

= ∫ ∫ 𝑃{𝑇1 > 𝑠 − 𝑦 − 𝑥} 𝑑𝐹𝑋(𝑥) 𝑑𝐹2(𝑦)
𝑠−𝑡

0

𝑡

0

+ ∫ ∫ 𝑃{𝑇1 > 𝑡 − 𝑦} 𝑑𝐹𝑋(𝑥) 𝑑𝐹2(𝑦)
∞

𝑠−𝑡

𝑡

0

 

= ∫ ∫ 𝐹̅1(𝑠 − 𝑦 − 𝑥)𝑓𝑋(𝑥) 𝑓2(𝑦)𝑑𝑥 𝑑𝑦 + ∫ ∫ 𝐹̅1(𝑡 − 𝑦)𝑓𝑋(𝑥)𝑓2(𝑦) 𝑑𝑥 𝑑𝑦
∞

𝑠−𝑡

𝑡

0

𝑠−𝑡

0

𝑡

0

 

 

Given the information that the three-state standby system is 

at its partially working state, the MRL of the system is the 

expected value of the conditional random variable {𝑇1 + 𝑇2 +

𝑋 − 𝑡|𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡} and obtained as; 

𝑚2(𝑡) = 𝐸(𝑇1 + 𝑇2 + 𝑋 − 𝑡|𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡)     (17)       

= ∫ 𝑃(𝑇1 + 𝑇2 + 𝑋 > 𝑡 + 𝑣|𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡) 𝑑𝑣
∞

0

 

= ∫
𝑃(𝑇1 + 𝑇2 + 𝑋 > 𝑡 + 𝑣, 𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡)

𝑃(𝑇2 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡)

∞

0

𝑑𝑣                   

By taking into account equation (17), under the information 

that a partially working state is observed for the system at ∀𝑡 , 

one can obtain the MRL of the three-state standby system as; 

𝑚2(𝑡) =
∫ ∬ 𝑃{𝑇1 > 𝑡 + 𝑣 − 𝑦 − 𝑥, 𝑇1 > 𝑡 − 𝑦|𝑇2 = 𝑦, 𝑋 = 𝑥} 𝑑𝐹

𝑋,𝑇2(𝑥,𝑦) 𝑑𝑣𝑦<𝑡,𝑥>𝑡
∞

0

∫ 𝑃{𝑇1 > 𝑡 − 𝑦|𝑇2 = 𝑦} 𝑑𝐹2(𝑦)
𝑡

0

   (18) 

Thus, equation (18) is basically used to calculate the MRL 

of the three-state standby system when someone observes the 

system at its partially working state at ∀𝑡. 

Corollary 4: If 𝑇1, 𝑇2 and 𝑋 are independent, then the MRL 

when the system is observed to be at its partial woking state at 

time 𝑡 is; 

𝑚2(𝑡) =
∫ (∫ ∫ 𝐹1(𝑡+𝑣−𝑦−𝑥)𝑓𝑋(𝑥)𝑓2(𝑦) 𝑑𝑥𝑑𝑦 + ∫ ∫ 𝐹1(𝑡−𝑦)𝑓𝑋 𝑓2(𝑦) 𝑑𝑥𝑑𝑦

∞
𝑠−𝑡

𝑡
0

𝑠−𝑡
0

𝑡
0 ) 𝑑𝑣

∞
0

∫ 𝐹1(𝑡−𝑦)𝑓2(𝑦) 𝑑𝑦
𝑡

0

        (19) 

 

Theorem 3: Given the information that the three-state 

system has failed and been backed up with a standby  

 

component at ∀𝑡, the system’s conditional survival function is 

obtained as; 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇≥1 ≤ 𝑡, 𝑋 > 𝑡}  (20) 

=
∫ 𝑃{𝑋 > 𝑠 − 𝑧|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)

𝑡

0

∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧 (𝑧)
𝑡

0

 ,                     𝑠 ≥ 2𝑡 

 

 

=
∫ 𝑃{𝑋 > 𝑠 − 𝑧|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧) + ∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧 (𝑧)

𝑡

𝑠−𝑡

𝑠−𝑡

0

∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧 (𝑧)
𝑡

0

, 𝑡

< 𝑠 ≤ 2𝑡 
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where 𝑇1 + 𝑇2 = 𝑍. 

Proof: We can express (20) as; 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇1 + 𝑇2 ≤ 𝑡, 𝑋 > 𝑡} (21) 

To solve equation (21) the following equation is established; 

 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇1 + 𝑇2 ≤ 𝑡, 𝑋 > 𝑡} =

𝑃{𝑇1+𝑇2+𝑋>𝑠,𝑇1+𝑇2<𝑡,𝑋>𝑡}

𝑃{ 𝑇1+𝑇2<𝑡,𝑋>𝑡}
,  (22) 

and then to solve equation (22), respectively, the following 

equations needs to be dealt with; 

𝑃{ 𝑇1 + 𝑇2 ≤ 𝑡, 𝑋 > 𝑡} = 𝑃{𝑍 ≤ 𝑡, 𝑋 > 𝑡} (23) 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠, 𝑇1 + 𝑇2 ≤ 𝑡, 𝑋 > 𝑡} = 𝑃{𝑍 + 𝑋 > 𝑠, 𝑍 ≤

𝑡, 𝑋 > 𝑡}    (24) 

where 𝑇1 + 𝑇2 = 𝑍. Thus, equations (23) and (24) are 

solved respectively; 

𝑃{𝑍 ≤ 𝑡, 𝑋 > 𝑡} = ∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)
𝑧≤𝑡

 (25) 

𝑃{𝑍 + 𝑋 > 𝑠, 𝑍 ≤ 𝑡, 𝑋 > 𝑡} = ∫ 𝑃{𝑋 > 𝑠 − 𝑧, 𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)
𝑧≤𝑡

 

= ∫ 𝑃{𝑋 > 𝑠 − 𝑧|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧) + ∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)
𝑧≤𝑡

 𝑠−𝑧<𝑡
𝑧≤𝑡

  𝑠−𝑧>𝑡

 

= ∫ 𝑃{𝑋 > 𝑠 − 𝑧|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)
min (𝑡,𝑠−𝑡)

0
+

∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)
𝑡

𝑠−𝑡
 (26) 

Therefore, by considering 𝑠 − 𝑡 < 𝑡 or 𝑠 − 𝑡 ≥ 𝑡 in equation 

(26) and the other result obtained in equation (25), the required 

result is provided. 

Corollary 5: If 𝑇1, 𝑇2 and 𝑋 are independent, then the 

survival probability equation can be written as; 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑠|𝑇1 + 𝑇2 < 𝑡, 𝑋 > 𝑡} (27) 

=
∫ 𝐹̅𝑋(𝑠 − 𝑧)𝑓𝑍(𝑧) 𝑑𝑧

𝑡

0

∫ 𝐹̅𝑋(𝑡)𝑓𝑍(𝑧) 𝑑𝑧
𝑡

0

,           s ≥ 2t  

=
∫ 𝐹̅𝑋(𝑠 − 𝑧)𝑓𝑍(𝑧) 𝑑𝑧 + ∫ 𝐹̅𝑋(𝑡)𝑓𝑍(𝑧) 𝑑𝑧

𝑡

𝑠−𝑡

𝑠−𝑡

0

∫ 𝐹̅𝑋(𝑡)𝑓𝑍(𝑧) 𝑑𝑧
𝑡

0

,       t ≤ s ≤ 2t 

The MRL of the three-state standby system when the system 

has known to be failed and the standby component has been 

activated at ∀𝑡 is provided by taking into account the 

expectation of the random variable {𝑇1 + 𝑇2 + 𝑋 − 𝑡|𝑇1 +

𝑇2 ≤ 𝑡, 𝑋 > 𝑡}  as follows; 

𝑚(𝑡) = 𝐸(𝑇1 + 𝑇2 + 𝑋 − 𝑡|𝑇1 + 𝑇2 ≤ 𝑡, 𝑋 > 𝑡)     (28) 

= ∫ 𝑃(𝑇1 + 𝑇2 + 𝑋 > 𝑡 + 𝑣|𝑇1 + 𝑇2 ≤ 𝑡, 𝑋 > 𝑡) 𝑑𝑣
∞

0

 

Using equation (28), 

𝑚(𝑡) =
∫ ∫ 𝑃{𝑋 > 𝑡 + 𝑣 − 𝑧|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧) 𝑑𝑣

𝑡
0

∞
0

∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑍(𝑧)
𝑡

0

, s ≥ 2t   (29) 

 

𝑚(𝑡) =

∫ [∫ 𝑃{𝑋 > 𝑡 + 𝑣 − 𝑧|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)+∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)
𝑡

𝑠−𝑡
𝑠−𝑡

0 ] 𝑑𝑣
∞

0

∫ 𝑃{𝑋 > 𝑡|𝑍 = 𝑧} 𝑑𝐹𝑧(𝑧)
𝑡

0

,

t ≤ s < 2t                   (30) 

Thus equations (29) and (30) are substantially used to 

achieve the system’s MRL values when someone observes the 

three-state system has failed and the standby component has 

been activated at ∀𝑡. 

Corollary 6:  If 𝑇1, 𝑇2 and 𝑋 are independent, then the mean 

residual lifetime when the system has known to be failed  

before time 𝑡 and the standby component has been activated 

is; 

𝑚(𝑡) =
∫ ∫ 𝐹𝑋(𝑡+𝑣−𝑧)𝑓𝑧(𝑧) 𝑑𝑧 𝑑𝑣

𝑡
0

∞
0

∫ 𝐹𝑋(𝑡)𝑓𝑧(𝑧) 𝑑𝑧
𝑡

0

,    s ≥ 2t  (31) 

𝑚(𝑡) =
∫ [∫ 𝐹𝑋(𝑡+𝑣−𝑧)𝑓𝑧(𝑧) 𝑑𝑧

𝑡

0
+∫ 𝐹𝑋(𝑡)𝑓𝑧(𝑧) 𝑑𝑧

𝑡

𝑠−𝑡
] 𝑑𝑣

∞

0

∫ 𝐹𝑋(𝑡)𝑓𝑧(𝑧) 𝑑𝑧
𝑡

0

, t ≤ s < 2t (32)  

2.3. Assessment of the MTTF of a Three-state Standby 

System 

Mean time to failure is one of the important characteristics of 

the system in the dynamic reliability analysis. MTTF denotes 

actually the expected time to failure for a binary system. In  

a binary context, for a system with lifetime 𝑇, the MTTF is 

𝐸(𝑇) = 𝑃{𝑇 > 𝑡}.  However, in a MSS, because the lifetime of 

the system is defined in a specific state 𝑗 or above, the MTTF is 

obtained as 𝐸(𝑇≥𝑗) = 𝑃{𝑇≥𝑗 > 𝑡}. Given the information that 

the three-state standby system is at its perfect or partial working 

states in the beginning of the degradation process, where 𝑡 = 0, 

the MRLs of the system equal to the MTTF of the system, as 

well. As a result of Theorem 1, the results obtained via equation 

(9) when 𝑡 = 0, actually is the MTTF value of the system. 

Therefore, the MTTF of the three-state standby system where it 

is known to be at perfect state at the beginning(where 𝑡 = 0), 

can be obtained by solving ∫ 𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑥}𝜕𝑥
∞

0
 as 

follows; 

= ∫ ∫ 𝑃{𝑇1 + 𝑋 > 𝑥 − 𝑦|𝑇2 = 𝑦}𝑑𝐹2(𝑦)
𝑦

𝑑𝑥
∞

0
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= ∫ ∫ 𝑑𝐹2(𝑦)𝑑𝑥
𝑦>0,𝑥−𝑦<0

∞

0
+ ∫ ∫ 𝑃{𝑇1 + 𝑋 >

𝑦>0,𝑥−𝑦>0

∞

0

𝑥 − 𝑦|𝑇2 = 𝑦}𝑑𝐹2(𝑦)𝑑𝑥  (33) 

Equation (33) can be given as; 

= ∫ 𝐹̅2(𝑥)𝑑𝑥
∞

0
+ ∫ ∫ 𝐹̅𝑍(𝑥 − 𝑦)𝑓2(𝑦)𝑑𝑦𝑑𝑥

𝑥

0

∞

0
      (34) 

where 𝑍 = 𝑇1 + 𝑋. 

Further, as a result of Theorem 2, the results obtained via 

equation (17) when 𝑡 = 0, directly gives the MTTF value of the 

system. Thus, the MTTF of the three-state standby system 

where it is known to be at partial working state at the 

beginning(where 𝑡 = 0), can be obtained by solving ∫ 𝑃{𝑇1 +
∞

0

𝑋 > 𝑠}𝜕𝑠 directly as follows; 

= ∫ ∫ 𝑃{𝑇1 + 𝑋 > 𝑠|𝑋 = 𝑥}
𝑥

𝑑𝐹𝑋(𝑥)𝑑𝑠
∞

0

 

= ∫ ∫ 𝑑𝐹𝑋(𝑥)𝑑𝑠
𝑠−𝑥<0

∞

0

+ ∫ ∫ 𝑃{𝑇1 > 𝑠 − 𝑥}𝑓𝑋(𝑥)𝑑𝑥𝑑𝑠
𝑠−𝑥>0

∞

0

 

= ∫ ∫ 𝑓𝑋(𝑥)
∞

𝑠
𝑑𝑥𝑑𝑠

∞

0
+ ∫ ∫ 𝐹̅𝑇1(𝑠 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥𝑑𝑠

𝑠

0

∞

0
       (35) 

Also by the use of Theorem 3, one can again calculate the 

MTTF of the system when 𝑡 = 0 in equation (28). Then, the 

MTTF of the system is obtained by;  

∫ 𝑃{𝑋 > 𝑥}𝑑𝑥 = ∫ 𝐹̅𝑋(𝑥)𝑑𝑥
∞

0

∞

0
        (36) 

In this part of the study, some numerical examples are provided 

to point out how the theorems work under different distribution 

assumptions. The results are discussed under independency 

assumption of the random lifetimes. First, let the lifetime 

distribution of 𝑇1 and 𝑇2 follows exponential distribution with 

parameters 𝜆1 and 𝜆2, respectively (𝑇1∼Exponential(𝜆1),𝑇2 

∼Exponential(𝜆2)). Also, the lifetime distribution of the standby 

component follows exponential distribution with the parameter 

𝜆. In this case, because of independency, the distribution of 𝑍 =

𝑇1 + 𝑋 follows Gamma Distribution with the parameters 𝜆1 and 

𝜆. In case of independency, by using the equations given in 

Corollary 2 and 4, the MRL results of the three-state standby 

system under the given information of the system regarding 

states "2" and at state "1" are obtained and they are presented in 

the following tables I and II, respectively. 

According to Table I,  in case the three-state standby system is 

observed to be at its perfect functioning state at time 𝑡 , there is 

no change in the MRL value of the system with an increase in 

time.  This is an expected result via using exponential lifetime 

distributions for each state and due to the independency among 

the states. When the results based on the parameters are 

examined, when 𝜆1 increases whereas 𝜆2 and 𝜆 are constant, the 

MRL value of the three-state standby system decreases. The 

similar result is obtained for MRL when 𝜆1 and 𝜆 are constant 

and 𝜆2  increases. Both the changes in 𝜆1 and 𝜆2  has an effect 

on the related MRL. The influences of the degradation rate of 

the standby component on the MRL values of the system are 

also examined. When we consider both cases in which 𝜆1 and 

𝜆2  are taken as; one is constant and the other one is increasing, 

respectively, while the values of 𝜆 are constant, the MRL values 

do not change. Let us explain it with a specific example; when 

𝜆2 =0.5 , 𝜆1 = 0.8 and 𝜆 =0.7, in case the system is observed to 

be at its perfect state at time "1.0", the MRL of the system is 

4.679. Besides, the result is the same when 𝜆2=0.8 , 𝜆1 = 0.5  

and 𝜆 = 0.7. However, for a similar situation (𝜆2 =0.5(1.2) and, 

𝜆1 = 1.2(0.5)), if only the value of the parameter 𝜆 increases to 

0.8, the related MRL of the system decreases to "4.083". Thus, 

we can easily say that when 𝜆 increases, it has an decreasing 

effect on the MRL of the system. In Table 1, the values obtained 

when t=0 are also the MTTF values of the system. They can also 

be achieved by the use of equation (34), as well. 

In accordance with the results in Table 2, it can be pointed out 

the MRL value of the three-state standby system given the 

information that it is at its partially working state at 𝑡, does not 

change in accordance with the time change. The MRL of the 

system is observed to decrease when 𝜆2 and 𝜆 are constant and 

𝜆1 increases. However, when 𝜆1 and 𝜆 are constant and 𝜆2 

increases, the MRL do not change. Thus, it is worth prominent 

that the MRL obtained when the system is observed to be at its 

partial working state at time 𝑡 is not affected by the parameter 

𝜆2. When an increasing effect of the failure rate parameter 𝜆 of 

the standby component is sought, it is obvious to say that it has 

a decreasing effect on the related MRL of the system. In Table 

2, the values obtained when 𝑡 = 0 are also the MTTF values of 

the system. They can be obtained via equation (35), as well. 

Also the MRL results of the system when the system has known 

to be failed and the standby component has been activated are 

obtained by using equations (31) and (32) in case of 

independency. In this case, because of independency, the 

distribution of 𝑍 = 𝑇1 + 𝑇2 follows Gamma Distribution with 

the parameters 𝜆1 and 𝜆2 and the MRL results are obtained and 

presented in the following Table 3. 

 

 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

Table 1. The MRL values of a three-state standby system given that the system is at its perfect functioning state 

   𝑡 = 0 𝑡 = 1.0 𝑡 = 2.0 

𝜆2 𝜆1 𝜆 𝑚1(𝑡) 𝑚1(𝑡) 𝑚1(𝑡) 

0.5 0.8 0.7(0.7) 4.68(4.679) 4.679(4.679) 4.679(4.679) 

0.5 1.2 0.7(0.8) 4.263(4.083) 4.262(4.083) 4.262(4.083) 

0.5 2.0 0.7(0.9) 3.93(3.611) 3.929(3.611) 3.929(3.611) 

0.5 3.5 0.7(1.2) 3.715(3.119) 3.714(3.119) 3.714(3.119) 

0.5 5.5 0.7(1.5) 3.611(2.848) 3.61(2.848) 3.61(2.848) 

0.8 0.5 0.7(0.7) 4.68(4.679) 4.679(4.679) 4.679(4.679) 

1.2 0.5 0.7(0.8) 4.263(4.083) 4.262(4.083) 4.262(4.083) 

2.0 0.5 0.7(0.9) 3.93(3.611) 3.929(3.611) 3.929(3.611) 

3.5 0.5 0.7(1.2) 3.715(3.119) 3.714(3.119) 3.714(3.119) 

5.5 0.5 0.7(1.5) 3.611(2.848) 3.61(2.848) 3.61(2.848) 

Table 2. The MRL values of a three-state standby system given that the system is at its partially working state. 

   𝑡 = 0 𝑡 = 1.0 𝑡 = 2.0 

𝜆2 𝜆1 𝜆 𝑚2(𝑡) 𝑚2(𝑡) 𝑚2(𝑡) 

0.5 0.8 0.7(0.7) 2.679(2.679) 2.679(2.679) 2.679(2.679) 

0.5 1.2 0.7(0.8) 2.262(2.083) 2.262(2.083) 2.262(2.083) 

0.5 2.0 0.7(0.9) 1.929(1.611) 1.929(1.611) 1.929(1.611) 

0.5 3.5 0.7(1.2) 1.714(1.119) 1.714(1.119) 1.714(1.119) 

0.5 5.5 0.7(1.5) 1.61(1.015) 1.61(1.015) 1.61(1.015) 

0.8 0.5 0.7(0.7) 3.429(3.429) 3.429(3.429) 3.429(3.429) 

1.2 0.5 0.7(0.8) 3.429(3.25) 3.429(3.25) 3.429(3.25) 

2.0 0.5 0.7(0.9) 3.429(3.111) 3.429(3.111) 3.429(3.111) 

3.5 0.5 0.7(1.2) 3.429(2.833) 3.429(2.833) 3.429(2.833) 

5.5 0.5 0.7(1.5) 3.429(2.667) 3.429(2.667) 3.429(2.667) 

Table 3. The MRL values of a three-state standby system given that the system has failed and the standby component has been activated. 

   𝑡 = 0 𝑡 = 1.0 𝑡 = 2.0 

𝜆2 𝜆1 𝜆 𝑚2(𝑡) 𝑚2(𝑡) 𝑚2(𝑡) 

0.5 0.8 0.7(0.7) 1.429(1.43) 2.05(2.058) 2.609(2.609) 

0.5 1.2 0.7(0.8) 1.429(1.252) 2.047(1.868) 2.567(2.389) 

0.5 2.0 0.7(0.9) 1.429(1.113) 2.027(1.71) 2.502(2.184) 

0.5 3.5 0.7(1.2) 1.429(0.834) 1.998(1.403) 2.426(1.83) 

0.5 5.5 0.7(1.5) 1.429(0.667) 1.971(1.209) 2.375(1.613) 

0.8 0.5 0.7(0.7) 1.429(1.43) 2.05(2.058) 2.609(2.609) 

1.2 0.5 0.7(0.8) 1.429(1.252) 2.047(1.868) 2.567(2.389) 

2.0 0.5 0.7(0.9) 1.429(1.113) 2.027(1.71) 2.502(2.184) 

3.5 0.5 0.7(1.2) 1.429(0.834) 1.998(1.403) 2.426(1.83) 

5.5 0.5 0.7(1.5) 1.429(0.667) 1.971(1.209) 2.375(1.613) 

When the results are considered, the MRL values are 

observed to increase by the time increase. When the effect of 

the parameters are examined, some interesting results are 

observed. For instance, when 𝜆2 and 𝜆 are constant and 𝜆1 

increases, MRL values obtained when 𝑡 = 0 do not change 

except the other time points. The interpretation is the same when 

𝜆1 and 𝜆 are constant and 𝜆2 increases. For the same values of 

𝜆1 + 𝜆2 only the decrease in the value of the parameter 𝜆 has a 

decreasing effect on the MRL of the system for different values 

of 𝑡 except "0". In Table III, the values obtained when 𝑡 = 0 are 
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also the MTTF values of the system. Equation (36) can also be 

used to calculate the related time to failure values, as well. 

 

Figure 1. Plots of 𝑚1(1.5), 𝑚2(1.5) and 𝑚(1.5) based on the 

change in the parameter 𝜆2 where 𝜆1 = 0.5, 𝜆 = 0.4. 

 

Figure 2. Plots of 𝑚1(1.5), 𝑚2(1.5) and 𝑚(1.5) based on the 

change in the parameter 𝜆1 where 𝜆2 = 0.6, 𝜆 = 0.4. 

 

Figure 3. Plots of 𝑚1(1.5), 𝑚2(1.5) and 𝑚(1.5) based on the 

change in the parameter 𝜆 where 𝜆2 = 0.7, 𝜆1 = 0.5. 

In Figures I-III, the behaviors of the mean residual lifetime 

functions can be seen more explicitly. In the figures, MRL1 

denotes 𝑚1(1.5), MRL2 and MRL indicates 𝑚2(1.5) and 

𝑚(1.5), respectively. In Figure I, for the given values of 𝜆1 and 

𝜆, the increase in the parameter 𝜆2 has no effect on 

𝑚2(1.5) whereas it has a decreasing effect on both 𝑚1(1.5) and 

𝑚(1.5). In Figure II, for the given values of 𝜆2 and 𝜆, the 

increase in the parameter 𝜆1 has a decreasing effect on all the 

MRLs at time point 1.5. Besides, the decrease in 𝑚(1.5) is 

slightly smaller than the decrease in 𝑚2(1.5).  Eventually, the 

increase in the parameter 𝜆, where the other parameters are 

taken as constants, has again a decreasing effect on all the MRLs 

of the system.  

3. Optimal Replacement Time  

For an expert to decide the optimal replacement time of the 

system which minimizes the total long-run average cost per unit 

time is quite important in scheduling the maintenance activities 

of the system. Therefore, in this section, we aim to determine 

the optimal replacement time of a multi-state standby system 

which supplies at the same time the minimum average cost per 

unit time of the system. According to the classical age 

replacement policy considered in Ahmad&Kamaruddin [1], the 

system is replaced upon its failure or upon its reaching age 𝑡. 

Then, the mean cost rate per unit time can be calculated via, 

𝐶(𝑡) =
𝑐𝐼𝑃(𝑇>𝑡)+𝑐𝐼𝐼𝑃(𝑇≤𝑡)

𝐸(min(𝑇,𝑡))
  (37) 

where 𝑇 represents the lifetime of the system , 𝑐𝐼 and 𝑐𝐼𝐼  denotes 

the costs of replacing a non-failed and a failed system (𝑐𝐼 <

𝑐𝐼𝐼 ), respectively [10]. The value of the replacement age 

𝑡∗ which minimizes the average cost is determined by the 

equation (37). 

Equation (37) just considers that the system is working or 

failed at an arbitrary time 𝑡. However, for an arbitrary time point 

𝑡 when we consider the system is working, there can be two 

situations. The first one is a three-state system can be in a 

working state at time 𝑡. The second one is; the three-state system 

can be failed and the two-state standby unit can be activated at 

time 𝑡, thus the system is still in a working state. Therefore, for 

both of these cases the three-state standby system is working. 

Thus, the replacement costs for the cases where the standby unit 

is activated and is not activated differes. Instead of equation 

(37), the following mean cost per unit time is proposed for the 

model we consider, 
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𝐶(𝑡) =
𝑐1𝑃(𝑇≥1+𝑋>𝑡,𝑇≥1>𝑡)+𝑐2𝑃(𝑇≥1+𝑋>𝑡,𝑇≥1≤𝑡)+𝑐3𝑃(𝑇≥1+𝑋≤𝑡)

𝐸(𝑚𝑖𝑛(𝑇≥1+𝑋,𝑡))
(38) 

where 𝑇≥1 and 𝑋 represent the lifetime of the three-state system 

and the standby component, respectively, 𝑐1 denotes the cost of 

replacing a non-failed three-state system, 𝑐2 indicates the cost 

of replacing the failed three-state system whereas the standby 

component has been activated , and finally, 𝑐3 denotes the cost 

of replacing the failed three-state standby system. When the 

replacement costs are considered, the cost of replacement for 

the failed three-state standby system, 𝑐3, is greater than the costs 

of replacement for the non-failed three-state standby system, 𝑐1 

and 𝑐2 (𝑐3 > 𝑐2 and 𝑐3 > 𝑐1). Also, the cost of replacement 

when the standby component is activated is always greater than 

the cost when the standby component is not activated (𝑐1 < 𝑐2). 

Therefore, the following relation among the replacement costs 

are considered; 𝑐1 < 𝑐2 < 𝑐3 within the study. 

 

Figure 4. Athree-state standby system’s degradation process.  

By taking into account the mentioned replacement costs, which 

are also shown in the Figure 4, the value of the replacement age 

𝑡∗ which minimizes the average cost is determined by solving 

the equation (38). To solve equation (38), one needs to deal 

with;  

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑡, 𝑇1 + 𝑇2 > 𝑡} = ∫ 𝐹̅𝑍
∞

0
(𝑡)𝑓𝑋(𝑥)𝑑𝑥    (39) 

𝑃{𝑇1 + 𝑇2 + 𝑋 > 𝑡, 𝑇1 + 𝑇2 ≤ 𝑡} = ∫ 𝐹̅𝑋𝑧≤𝑡
(𝑡 − 𝑧)𝑓𝑍(𝑧)𝑑𝑧   (40) 

where 𝑍 = 𝑇1 + 𝑇2 and 𝑍~𝐹𝑍(𝑧), 𝑋~𝐹𝑋(𝑥), 

Als𝑇2~𝐹𝑇2(𝑡) , 𝑇1~𝐹𝑇1(𝑡). o, it is considered as 

; 𝑇1~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆1), 𝑇2~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆2), 𝑋~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆) 

and 𝑍~𝐺𝑎𝑚𝑚𝑎(𝜆1, 𝜆2). 

𝑃{𝑇1 + 𝑇2 + 𝑋 ≤ 𝑡} = 1 − (𝐹̅𝑇2(𝑡) + ∫ 𝐹̅𝑍(𝑡 − 𝑦)
𝑡

0
𝑓𝑇2(𝑦)𝑑𝑦)  (41) 

𝐸(min(𝑇1 + 𝑇2 + 𝑋, 𝑡)) = ∫ (𝐹̅𝑇2
𝑡

0
(𝑥) + ∫ 𝐹̅𝑍

𝑥

0
(𝑥 −

𝑦)𝑓𝑇2(𝑦)𝑑𝑦)𝑑𝑥   (42) 

where 𝑍 = 𝑇1 + 𝑋 and and 𝑍~𝐹𝑍(𝑧), 𝑋~𝐹𝑋(𝑥), 

𝑇2~𝐹𝑇2(𝑡) , 𝑇1~𝐹𝑇1(𝑡). 𝑇1 and 𝑇2 are assumed to distribute 

with exponential distributions with 𝜆1 and 𝜆2 parameters, 

respectively, whereas 𝑍~𝐺𝑎𝑚𝑚𝑎(𝜆1, 𝜆). 

Table 4. Minimum Average Cost per Unit Time and Optimal 

Replacement Time of the System. 

𝜆1 𝜆2 𝜆 𝑐1 𝑐2 𝑐3 𝐶(𝑡∗) 𝑡∗ 

0.8 0.5 0.7 3 4 5 1.069 16 

0.8 0.5 0.7 3 4 10 1.994 4 

0.8 0.5 0.7 3 10 5 1.069 19 

0.8 0.5 0.7 8 4 5 1.069 18 

1.2 0.5 0.7 3 4 5 1.173 17 

0.8 0.9 0.7 3 4 10 2.464 3 

0.8 0.5 1.5 3 4 10 2.412 3 

When we consider Table IV, for all the given parameters, the 

increase in the value of 𝑡 , the optimal replacement time, is 

observed with an increase in 𝑐3 while 𝑐1 and 𝑐2 are constant. 

The minimum average cost per unit time increases with an 

increase in 𝑐3. The increases in  both 𝑐1 and 𝑐2 do not have any 

effect on the minimum average cost whereas have an increasing 

effect on the optimal replacement time. When the results are 

examined considering the changes in the parameters of the 

lifetime distributions, when  𝜆2 and 𝜆 are constant and 𝜆1 

increases, the average cost per unit time increases. Also, we 

obtain a slight increase in the optimal replacement time of the 

system. Furthermore, when 𝜆1 and 𝜆  are constant and 𝜆2  

increases, the system's average replacement cost increases. 

Similarly the optimal replacement time decreases slightly. The 

same interpretation can be done when 𝜆2 and  𝜆1 are taken as 

constant values and 𝜆 increases. 

4. A Case Study 

To give a more specific example relates with the model which 

is proposed within this study, we consider the problem of an 

energy supply issue of a smart house. For instance, let us 
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consider a smart house providing its own energy by a wind 

turbine installed in its own roof. Kinetic energy is converted to 

electrical energy by the wind turbines. Due to the wind speed, 

the power is generated by the turbine which is working properly. 

Therefore, an energy is produced by the turbine based on the 

speed of the wind. Both the wind speed and the power are 

random variables. The maximum power generated by the 

turbine at a specific wind speed, is called the nominal wind 

speed for the turbine. For example, if the turbine generates at 

the maximum level, 1.5 megawatts energy, at a wind speed of 

12.5 meter/second, then the nominal wind speed for the turbine 

is 12.5 meter/second. The studies considering the reliability 

analysis of wind turbines generally take into account the turbine 

as a binary system structure. However, there are some recent 

studies regarding wind turbines as multi-state structures. One of 

the studies in which a wind turbine is taken into consideration 

as a three-state system structure is the study of Eryilmaz [11]. 

In that study, Eryilmaz defines three states for a single wind 

turbine such as; State "2" indicates that the wind turbine 

generates power at nominal(rated) power, state "1" denotes that 

the wind turbine generates power at a rate which depends on the 

wind speed and as a last, state "0" is the failure state and it 

means the wind turbine generates no power. 

A wind turbine supported the smart home system and the 

direct current which the turbine generates charges the storage 

battery. The direct current is then converted to alternative 

current by a rectifier, so as to provide the energy requirement of 

the smart house. At the time when the turbine stops working 

properly or failes, a generator system which is a standby unit 

becomes involved in the system.This generator system only 

activates when the turbine is failed. It has just two states such 

as; state 1 indicates "working" and state 0 implies "failure" 

states. When this generator starts working, it directly generates 

alternative current. 

Therefore, a three-state turbine being backed up with a two-

state generator can be a good representative of the model 

proposed within this study. Also, owing to the fact that a hybrid 

energy models given in Figure 5, which includes solar panels 

along with turbines are attracting attention recently, a specific 

hybrid energy modeling can also be suggested for the proposed 

method as one further research problem arised from this study. 

 

Figure 5. A hybrid energy model working with a turbine and  

a solar panel. 

Let us consider tha data set related to the one of 177 USW 

56-100 type wind turbines included in the Sakskaya wind plant 

that is found in the Crime peninsula given in the study of 

Zaliskyi et al [36]. The data set includes 36 observed failures 

(i=1,2,...,36) of the wind turbine #112 during operation. 

Although the data set relates with the total times between 

failures, meaining a binary state turbine system has been 

considered within that work, we just use the mentioned data set 

to estimate the lifetime distributions for both states of the 

turbine considered in this work. For this reason, we assume the 

failure times in Table 5 are the lifetimes of the turbine when the 

wind turbine generates power at nominal(rated) power. Also, 

one more assumption is that the lifetimes obtained when the 

wind turbine generates power at nominal rate and at  a rate 

which depends on the wind speed have identical distributions.  

According to the goodness of fit tests, Anderson Darling test 

statistic shows exponential distribution fit to the data set with 

the p value 0.483. The estimated degradation rate for both states 

of the turbine is found to be as; 3.302 × 10−4(𝜆1 =

𝜆2=0.0003302). The MTTF for each state of the system is 

3028.3 hours. We assume the generator as the standby unit in 

the system also has an exponential distribution with a failure 

rate of  𝜆 = 0.015 hours. Therefore, its MTTF is 66.67 hours. 

Moreover, the MTTF for this three-state standby system is 

6.124× 103. Then, for the given estimated and the assumed 

parameters of the lifetimes, the related MRLs are calculated as; 

𝑚1(1500) = 6.124 × 103 , 𝑚2(1500) = 3.095 × 103 and 

𝑚(1500) = 1.024 × 103 hours of use. Also for another time 

point, 5000 hours, the estimated MRLs are; 𝑚1(5000) = 

6.124 × 103 , 𝑚2(5000) = 3.095 × 103 and 𝑚(5000) = 

2.9 × 103. When the three-state standby turbine system is 

observed at its perfect functioning state after 1500 hours of use, 
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the estimated MRL will be 6124 hours. When it is observed at 

its partially working state after 1500 hours of use, it has an 

estimated MRL of 3095 hours. After 5000 hours of use those 

estimated MRLs given the system is at its perfect and partial 

working states will be the same with the case of 1500 hours of 

use. However, when the turbine has failed before 1500 hours 

and been backed up with a generator then the estimated MRL of 

the system will be 1024 hours. If the turbine has been failed 

before 5000 hours and the generator has been activated, then the 

MRL will be estimated as 2900 hours.  

Table 5. Lifetime data set for a turbine when it generates power at nominal rate. 

Failure i Total time 𝑥𝑖(hour) Failure i Total time 𝑥𝑖(hour) Failure i Total time 𝑥𝑖(hour) 

1 2445 13 1885 25 4737 

2 330 14 3473 26 397 

3 73 15 3032 27 1012 

4 992 16 10825 28 1257 

5 3736 17 3321 29 1788 

6 96 18 5007 30 1884 

7 1163 19 11331 31 11 

8 3750 20 14493 32 1875 

9 589 21 643 33 1739 

10 44 22 5566 34 352 

11 5986 23 1734 35 1885 

12 6223 24 1872 36 3473 

5. Results and Discussion 

In this research, by the information given regarding the system 

is at a specific state 𝑗 at time 𝑡, the multi-state standby system’s 

survival and the mean residual lifetime functions are evaluated. 

A three-state single unit system is considered. The system's 

states "0, 1 and 2" denote failure, partial and perfect working 

states, respectively. The considered MSS is a cold standby when 

the system fails it is directly backed with a binary state unit with 

the failure and functioning states. In the study, the survival 

functions of the related system are achieved first and then, the 

mean residual lifetime functions of the system are obtained, 

under the cases that the system is known to be at its perfect and 

the partially working states at ∀𝑡. Also, when the system fails 

and backed up with a cold standby component at time t, the 

survival and mean residual lifetime functions are obtained, as 

well. The results obtained are examined under exponential 

lifetime distributions of the system. 

To exhibit the effect of the standby component of the system we 

compared the findings of this study with the results obtained in 

one recent study, the study of Iscioglu[16]. In the mentioned 

study, the three-state system’s MRL values are achieved under 

the information that the system is at a specific state at time 𝑡. 

The MRL values of both a three-state and a three-state standby 

system in case the systems are known to be at their perfect and 

partial states at ∀𝑡 are shown in Table 6. According to the 

results, the MRLs obtained for a three-state standby system are 

higher than the MRLs attained for a three-state system when 

different state knowledges are given regarding the system. 

Based on the time increase, both MRLs of the systems do not 

change due to the effect of the exponential distributed lifetimes 

spent by the system at each state. When considering the lifetime 

parameters, such that 𝜆2 is constant and 𝜆1 is increasing, the 

MRL of a three-state system decrease. Similarly, when 𝜆2  and  

𝜆 parameters are constant and 𝜆1 increases, the MRL of a three-

state standby system also decrease. Furthermore, when 𝜆1 is 

constant and 𝜆2 increases, the MRL values of the three-state 

system in case it is at its perfect functioning state decrease 

whereas, MRL values of the three-state system when it is at its 

partially working state do not change. Similarly, MRL values of 

the three-state standby system under the knowledge that it is at 

its perfect state at time 𝑡 decrease when 𝜆1 and 𝜆 parameters are 

constant and 𝜆2 increases. However, with the given information 

regarding the system is at its partial state at time t, the MRL 

values of the three-state standby system do not change when 𝜆1 

and 𝜆 parameters are constant and 𝜆2 increases. 

    When the optimization problem results are discussed, one can 

observe that the increase in the degradation rate of the standby 

unit requires early replacement time of the system and the 

increase in the cost of replacement of the standby unit results 

inthe higher average cost of replacement with a lower optimal 

replacement time of the system.  
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Table 6. The MRL comparison of a three-state system and a three-state cold standby system. 

   𝑡 = 0 𝑡 = 1 

𝜆2 𝜆1 𝜆 𝑚1
𝐼 (𝑡) 𝑚1

𝐼𝐼(𝑡) 𝑚2
𝐼 (𝑡) 𝑚2

𝐼𝐼(𝑡) 𝑚1
𝐼 (𝑡) 𝑚1

𝐼𝐼(𝑡) 𝑚2
𝐼 (𝑡) 𝑚2

𝐼𝐼(𝑡) 

0.5 0.8 - 3.25 - 1.25 - 3.25 - 1.25 - 

0.5 0.8 0.8 - 4.5 - 2.5 - 4.5 - 2.5 

0.5 1.2 - 2.83 - 0.833 - 2.833 - 0.833 - 

0.5 1.2 0.8 - 4.083 - 2.083 - 4.083 - 2.083 

0.5 2.0 - 2.5 - 0.5 - 2.5 - 0.5 - 

0.5 2.0 0.8 - 3.75 - 1.75 - 3.75 - 1.75 

0.8 0.5 - 3.25 - 2.0 - 3.25 - 2.0 - 

0.8 0.5 0.8 - 4.5 - 4.0 - 5.25 - 4 

1.2 0.5 - 2.83 - 2.0 - 2.833 - 2.0 - 

1.2 0.5 0.8 - 4.083 - 3.25 - 4.083 - 3.25 

2.0 0.5 - 2.5 - 2.0 - 2.5 - 2.0 - 

2.0 0.5 0.8 - 3.75 - 3.25 - 3.75 - 3.25 

𝑚1
𝐼 (𝑡); MRL of three-state system in case the system is at its perfect state at time point  𝑡. 

𝑚2
𝐼 (𝑡); MRL of three-state system in case the system is at its partial working state at time point  𝑡. 

𝑚1
𝐼𝐼(𝑡); MRL of three-state standby system in case the system is at its perfect state at time point  𝑡. 

𝑚2
𝐼𝐼(𝑡); MRL of three-state standby system in case the system is at its partial working state at time point  𝑡. 

 

6. Conclusions 

For a three-state standby system, the MRL of the system and the 

optimal replacement times that minimize the mean replacement 

costs of the system under the knowledges regarding the states 

of the system for arbitrary time points are highly important in 

the maintenance and repair plans. In this sense, this study 

contributes some important findings to the literature and as well 

to the industrial applications considering standby redundancy. 

The results obtained are supposed to be used in the reliability 

improvement studies of multi-state standby systems. 

Some additional contributions can also arise. We used  

a binary standby unit in this study for the ease of theoretical 

achievements. However, the standby unit can also be multi-

state. For instance, let’s consider the standby unit has also three-

states and the related lifetimes at each state are represented as;  

𝑋2 is the lifetime of the standby unit spent at state “2” and  𝑋1 

is the lifetime of the standby unit spent at state “1”, then in order 

to find out the survival probability functions, one needs to deal 

with the following probabilities; 

𝑃(𝑇≥1 + 𝑋≥1 > 𝑠|𝑇≥2 > 𝑡)  (43) 

𝑃(𝑇≥1 + 𝑋≥1 > 𝑠|𝑇≥2 ≤ 𝑡, 𝑇≥1 > 𝑡)  (44) 

𝑃(𝑇≥1 + 𝑋≥1 > 𝑠|𝑇≥1 ≤ 𝑡, 𝑋≥2 > 𝑡)  (45) 

𝑃(𝑇≥1 + 𝑋≥1 > 𝑠|𝑇≥1 ≤ 𝑡, 𝑋≥2 ≤ 𝑡, 𝑋≥1 > 𝑡)           (46) 

where 𝑃{𝑇≥2 > 𝑡} > 0 and 𝑃{𝑇≥2 ≤ 𝑡, 𝑇≥1 > 𝑡} > 0 implies 

respectively 𝑃{𝑋≥1 > 𝑡} = 1 for 𝑡 > 0 due to cold standby 

redundancy assumption. When the component fails the standby 

component starts to function with its perfect functioning state 

and by the increase in time it will degradate to a lower state. 

    Moreover this problem, further studies can also be conducted 

on the standby redundancy of a MSS based on hot or warm 

standby components. Also, except considering exponentially 

distributed lifetimes of a system, Weibull distribution can be one 

other distribution assumption for the system lifetimes if  

a NHCTMP assumption is taken into account for the 

degradation process of the system. However, in that case, in the 

theoretical achievements of the theorems, although there is an 

independency assumption among the lifetimes spent at each 

state and also the lifetime of the standby unit, one problem that 

can arise is to find the distribution of the sum of the two random 

lifetimes. Maybe, one other distribution which is most widely 

used, the normal distribution, can also be used under NHCTMP 

assumption in the application of the proposed theorems. For 

instance; if 𝑇1~𝑁(𝜇𝑇1 , 𝜎𝑇1) , 𝑇2~𝑁(𝜇𝑇2, 𝜎𝑇2)  and 

𝑋~𝑁(𝜇𝑋, 𝜎𝑋) then, because the random lifetimes are 
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independent, one can achieve 𝑇1 + 𝑋~𝑁(𝜇𝑇1 +

𝜇𝑋, √𝜎𝑇1
2 + 𝜎𝑋

2). Thus, this convolution of the two normally 

distributed random variables can easily be used in the 

theoretical evaluations obtained in the study and the 

interpretations based on normal distributions are worth 

considering. Besides, the lifetimes at each state are assumed to 

be independent random variables in this study. However, those 

lifetimes can be handled as dependent. Therefore, the 

dependency parameter effect on the survival probabilities and 

the MRL of the system can also be examined under the case of 

dependency. 

Acronyms and Abbreviations 

MSS   multi-state system 

MRL   mean residual lifetime 

MTTF   mean time to failure 

HCTMP   homogeneous continuous time Markov process 

NHCTMP  non-homogeneous continuous time Markov process 

Notations 

𝑃(. )   Probability of a random variable 

𝐹(. )   Cumulative distribution function of a random variable 

𝐹̅(. )   Survival function of a random variable 

𝑓(. )   Probability density function of a random variable 

𝐻(. , . )   Joint cumulative distribution function of random variables 

𝐸(. )   Expected value of a random variable 

𝜙(𝑡)   Structure function of a system at time 𝑡 

𝑇1   Lifetime of the component spent at state "1" 

𝑇2(𝑜𝑟 𝑇≥2)  Lifetime of the component spent at state "2" 

𝑇≥1(𝑜𝑟 𝑇1 + 𝑇2)  Lifetime of the component  

𝑋   Lifetime of the standby unit 

𝑚1(𝑡)   MRL function of the system when the system is observed to be at its perfect functioning state at time 𝑡 

𝑚2(𝑡)   MRL function of the system when the system is observed to be at its partially working state at time 𝑡 

𝑚(𝑡) MRL function of the system when the system has known to be failed before time 𝑡 and the standby 

component has been activated 

𝐶(. )   Mean cost per unit time 

𝑐𝐼(𝑐𝐼𝐼)   Cost of replacing a non-failed(failed) binary system 

𝑐1   Cost of replacing a non-failed three-state system 

𝑐2   Cost of replacing a failed three-state system whereas the standby component is activated 

𝑐3   Cost of replacing a failed three-state standby system 
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